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22452-970 Rio de Janeiro RI, Brazil 
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Abstract. Using a graph counting technique suitable for self-similar fractals we obtain the 
exact densities of partially (PDSAW) and fully (WSAW) directed self-avoiding walks on Sierpinski 
carpets. From lhem we calculate the root-mean-square transverse and longitudinal displacements 
of the n-step w a l b  up to n = 20 for PDSAWs and up to n = 23 for WSAWS. 
The crilica exponents YI found for the PDSAW depend on the fractal dimension as well as on 

the lacunarity of the lattice. The results indicate that PDSAWS and FosAws have different critical 
behaviour on lhe same carpet. 

1. Introduction 

It has been realized that the introduction of a global bias in geometrical models such as 
percolation or self-avoiding walks (SAWS) leads to novel anisotropic critical behaviour (see 
[l] and references therein). 

Here, we study the duected SAW models (DSAWS) which are self-avoiding walk models 
restricted not to step in several particular directions. 

The introduction of a preferred direction gives rise to two independent correlation 
lengths, parallel and perpendicular to the preferred direction. They are given respectively 
by the root-mean-square longitudinal displacement ( R f n ) 1 / 2  and by the root-mean-square 
perpendicular displacement ( R i J ' D  of the walk. They vary with the number of steps n as 

Figure 1 shows two types 'of DSAWs on a square lattice. The partially directed SAW 
model (PDSAW) is a three-choice model for which the steps upward, downward or to the 
right are allowed. The fully directed SAW (FDSAW) is a two-choice model for which onIy 
steps upward and to the right are allowed. The corresponding longitudinal and perpendicular 
directions are also shown in figure 1. 

Nadal et al [2] have pointed out that any fully directed SAW can be decomposed into 
a forward walk along the preferred direction and a random walk perpendicular to this 
direction. Later, Redner and Majid [3], Szpilka [4] and Blote and Hilhorst [5], using 
several techniques, obtained the exact results y = 1, V I ,  = 1 and VI = 4 for DSAWs on 
Euclidean lattices. Their results are valid for general dimensions E 2 2, regardless of the 
detailed restrictions of the steps and include the PDSAW and FDSAW models defined above 
for the square lattice. 
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Figure 1. IlluSVation of (a) PDSAW, (b) FDSAW on the 
square lattice. Also shown are the longitudinal (RI,) 
and bansverse (RI) displacement of each walk. 
The m o w s  indicate the allowed directions of the 

In fact, from a field-theoretic approach, Cardy [6] has shown that directed SAWS are in 
the same universality class as directed .random walks, and therefore should exhibit mean- 
field exponents y = 1, VI, = 1 and UL = : in all dimensions. 

The results of Zhang et a1 171 from an exact enumeration up to n = 10 of  five-choice 
partially directed self-avoiding walks on the cubic lattice also support that various partially 
directed SAWs belong to the same universality class as fully directed SAWs and that the 
asymptotic behaviour is dimension independent for E 

The question of universality classes of DSAWS on fractals then naturally arises. Some 
non-trivial versions of directed walks were proposed which are exact soluble on the 
Sierpinski gasket type of fractals, as for instance the piecewise directed random walks, 
for which the allowed directions depend on the site they visit [8,9]. For these walks, it was 
obtained that the critical exponent U associated with the mean squared end-to-end distance 
of n-step walks ((R:) - n’” ) is model dependent for each gasket. 

Recently, DSAWS were studied on a family of infinitely ramified fractals, the Sierpinski 
carpets [IO], but still there is some controversy about their critical behaviour. Yao and 
Zhang 1111 and Yao et al  [ 121 analysed PDSAWs and FDSAWs respectively on some carpets 
at finite stages of their constructions through Monte Carlo simulations. They obtained 
0.5 c VI c 1.0 and the dimension independent value V I ,  = 1. Their estimates support the 
hypothesis that PDSAWs and FDSAWs have the Same asymptotic behaviour on each carpet. 
On the other hand, Kim et al [13] argued that ul = 1 for all carpets based on analytic 
arguments and simulations. 

In this work, we study PDSAWs and FDSAWs on the Sierpinski carpets through series 
expansion techniques [14]. We apply a graph counting method that gives the density of 
connected graphs (number of embeddings per number of sites) in the limit of the infinite 
fractal lattice. 

The paper is organized as follows. in section 2 we show the graph counting method. i n  
section 3 we present the series analysis method used here and the results.~ i n  section 4 we 
give arguments based on the geometrical properties of the carpets to analyse our estimates 
and compare them with previous results in the literature. 

. 

2. 

2. Series expansions for Sterpinski carpets 

The Sierpinski carpets are constructed by the recursive iteration of a generator (in figure 2 
we show the generators of carpets numbered as 1 to 6 respectively). These generators are 
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Figure 2. Generators of Sierpinski carpets (a) b = 5,  m = I ;  (b) and (c) h = 6, m = 4; (d) and 
( e ) b = 7 ,  m = %  (0 b = 3 ,  m = I .  

formed by an initial square divided in b2 subsquares from which m are eliminated according 
to a fixed rule. This procedure is repeated indefinitely for the remaining squares to construct 
the fractal lattice, whose sites are located at the corners of the non-eliminated squares. The 
fractal dimension of the lattice is [lo]: 

In(b2 - m) DF = 
Inb ' 

A graph counting method [14] is used to find the number of embeddings of a graph in 
any stage of the construction of the carpet. This technique has already been applied to the 
SAW, to the king model and to ideal chains on these lattices [15-171. 

In figure 3 we show two possible embeddings of a graph (a PDSAW with three steps) in 
the second stage of carpet 2 . ~  Due to the self-similar constructing process, the lattice at the 
(t + 1)th stage is obtained by the reproduction of lth stage structure in the non-eliminatd 
squares of the generator. As a consequence, the number of embeddings G ( l )  of a graph in 
any stage e can be obtained from the number of embeddings G(t0) of the graph in a small 
stage eo as well as from the number of embeddings that cross two, three or four adjacent 
stages l o  (the stage t o  is the minimal stage in which the graph can be embedded). It was 
shown that [14]: 

G(t)  = A(b2 - m)e + Bb' + C (3) 

The number of sites N ( e )  belonging to the'carpet at the lth stage of construction also 
where A ,  B and C are rational constants. 

behaves as (3), with constants A', B' and C' [14]: 

(4) N ( l )  = A'(b2 - m)e t B'be + C'. 
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Figure 3. A padcular PDSAw with three steps (a) and 
two possible embeddings on carpet 6 at the second stage 

@) of construction @). 

The density of the graph in the fractal is then: 

After the enumeration of PDSAWS and FDSAWs in the square lattice, the density of each 
walk can be calculated according to (3), (4) and (5). From these densities we obtained 
( R i n )  nd ( R b )  for n-step PDSAWs on carpets Id up to order n = 20 and (Z&) for n-step 
FDSAWS on the same carpets up to order n = 23. The lengths are measured as in the square 
lattice (see figure 1). The results are shown in tables 1-3 respectively. 

3. Series analysis and results 

In order to find WL one should consider the ( R i a )  generating function 

which behaves as (xc - X ) - ( ~ " A + ' )  near the biased critical point x, = 1, in analogy with the 
mean squared end-to-end distance ((Ri)) generating function for SAWS [IS]. 

First, we consider the most used methods for series analysis, the Pad6 approximants and 
its generalizations [18,19]. These methods however are not suitable for PDSAW and FDSAW 
series. In fact, series (6) for PDSAWs and FDSAWS on the square lattice are rational fractions 
[3] and after a certain order the approximants become indeterminate [ZO]. On carpets, 
many approximants are defective (specially for FDSAWS), suggesting that the method is not 
appropriate as well. 

Another series analysis technique is the ratio method. According to this method, the 
critical point and the critical exponent of the generating function are obtained from the ratio 
between two consecutive series coefficients. From (lb) and (6) it is expected that 

Plotting p; versus l /n  one obtains estimates of VI from the slope of the plot. More 
precisely, we calculate 
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so that -+ v when n -+ CO. However, the ratio method is also not suitable for PDSAWs 
and FDSAWs on some carpets due to oscillations in U,. As an illustration, in figure 4 we 
plot versus l/n for the PDSAW on carpet 5. From this plot, although v i n  oscillates 
around 0.5. we cannot get accurate estimates. 

Then we propose the root method, based on the root test used to calculate the radius 
of convergence of'series. According to the root test, one should analyse Iim,,,a~l" to 
obtain the convergence properties of the series E, a,. For series (6) we consider 

(9) 2 I l n  W n = W i n )  . 
Introducing amplitude A] / *  in (lb), one has 

(n -+ 00) (104 fin x AI/nnZ"J.Ia 

or 

(lob) 

The third term on the right-hand side of equation (lob) does not contribute appreciably 
if Inn >> IlnAl. This condition holds for PDSAWS in the square lattice (A sz 1) when 
n 2 10. Then: 

Inn 
jLn c 1 + 2 v i - .  

n 

From (lOc) we calculate for each order n the corresponding estimate of UL: 

(11) 
I n  
21nn V.L" = --bn - 1). 

The final estimates of v i  are obtained by a procedure similar to the construction of 
Neville tables [18]: we consider u l n ,  as a function of Inn/n and find the intercepts at the 
lnnln = 0 axis (n + CO) of straight lines passing through two successive points of the 
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Figure 5. Plot of v l n  versus I n n l n  for PDSAWS on carpets 1-6 ((o)-f.f), respectively). 
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Table 4. Final estimates of YI for PDSAWS on carpets 1-6 

Carpet U 1  

I 0.55 * 0.01 
2 0.53 + 0.02 
3 0.55 * 0.02 
4 0.46 i 0.04 
5 0.54 5 0.04 
6 0.55 * 0.05 

Figure 6. Plol of versus I n n l n  for FOSAWS (a) on carper I and (b) on carpet 2 

plot. From the convergence of these intercepts we obtain the final estimates. The plots of 
w l n  versus Inn/n for PDSAWs on carpets 1 6  are well behaved, as shown in figure 5. In 
table 4 we show the final estimates of UL for PDSAWs on carpets 1-6. 

In figure 6 we plot v i ,  versus Inn/n for FDSAWs on carpets 1 and 2. The final estimates 
v i  = 0.50k0.01 and VI = 0.51 kO.02 for carpets 1 and 2 respectively were obtained using 
the same procedure described above. For carpets 3-6, the plots of w l n  do not show clear 
convergence properties but the visual inspeclion of the plots indicates that 0.4 e wL e 0.6. 

The slow convergence of series (6) for the FDSAW as compared to the PDSAW can be 
explained from the relation between their preferred directions and the symmetry axis of 
the carpets: the longitudinal and perpendicular directions agrees with the direction of the 
borders of the lacunas in the case of the PDSAW, but not in the case of the FDSAW. Besides, 
as the FDSAW on the square lattice behaves as ( R L }  = n/2, the amplitude A for the same 
model on carpets might contribute to (lob). 

In order to find VI, in ( la) .  we consider the (R;) generating function 

which behaves as (xc - X ) - ( ~ " I ~ + ~ )  near the biased critical point x, = 1. We also analyse 
(12) through the root method. Analogously to (11) we calculate the estimate of vII for each 
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order n from: 

The final estimates of V I ,  are obtained using the same procedure described to get V I .  In 
figure 7 we plot ulln versus Inn/n for PDSAWS on carpets 1 4 .  The final estimates of UII  are 
shown in table 5. For FDSAWS all steps contribute to the longitudinal displacement along 
the forward sense. Then, (R$ ' /2  - n leading to the trivial result ul; = 1. 

Table 5. Final estimates of YO for PDSAWS on carpets 1-6 

Carpet U! 

1 0.97 f 0.02 
2 0.97 i 0.03 
3 0.97 i 0.03 
4 0.98 i 0.03 
5 0.96 i 0.03 
6 0.97 i 0.02 

4. Conflusions 

The estimates of the critical exponents VI and vi1 for the PDSAW and the FDSAW on carpet 1 
show that the two models belong to different universality classes, in contrast to the results 
for Euclidean lattices. This means that the effect of the lacunas on the growth of the walk 
is different according to the relation between the special directions of the walk (longitudinal 
and perpendicular) and the directions of the borders of the lacunas. 

The lacunarity of the lattice [IO] influences the value of v i .  A s  observed for other 
models of walks [15,17], the fractal dimension alone does not define universality classes. 
According to our results for the PDSAW on carpets 2 and 3 (the lacunarity of carpet 3 is 
greater than that of carpet 2) and on carpets 4 and 5 (the lacunarity of carpet 5 is greater 
than that of carpet 4), for carpets with the same LJf, UL is larger for lattices with higher 
lacunarity. 

Figure 8 illustrates the influence of the lacunarity on u~ in the case of PDSAWS. In 
figure 8(a) the lacuna stretches the walk along the perpendicular direction when it touches 
the border. This effect is stronger when the lacuna is bigger (high lacunar fractal). On the 
other hand, in figure 8(b), the lacuna inhibits the growth of the walk along the perpendicular 
direction. This effect is stronger when the number of lacunas within the lattice is larger 
(low lacunar fractal). 

From the results shown in table 5, the lacunas also inhibit the longitudinal growth of 

It is possible to compare the end-to-end distance exponents of DSAWs and SAWS on 
carpets. For the isotropic SAW, as there is only one length scale, VL = VI! = USAW. From 
the results reported here for UL and U I I  for DSAWS and the results for USAW reported in [I51 
for SAWS on carpets 1, 4, 5 and 6, UL < USAW < q. 

Our results also show that UL for the PDSAW is different from the exponent URW for the 
random walk problem or qc for the ideal chain problem on the same carpet. For fractals, it 
is expected that URW and vic < 4 [21] and here v i  > 4 for most carpets. 

PDSAWS (U11 < I). 
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Figure 7. Plot of qn versus Inn/n for PDSAWS on carpets 1-5 ((~t(f) .  respectively). 
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Figure S. IllusIration of the influence of lhe lacunas on the transverse displacement of a PDSAW, 
(a) the lacuna stretches the walk. @) the lacuna compresses the walk. The arrows indicate the 
allowed directions of the steps. 

Our estimates can also be used to test results obtained by other techniques. For instance, 
the proposal LJL = 1 for FDSAWs .of [13] is not tenable. Their arguments are based on a 
particular ensemble of DSAWS having starting site on the lower left corner of the carpet at a 
finite-stage of conshuction. For these walks the probability of not encountering the largest 
hole ik exponentially small [13]. Then, they have overestimated the effect of the larger 
lacuna in a finite stage of the carpet (this effect is shown in figure 8(a)), overestimating UL. 
The same occurs in the simulations reported in 1131 in which walks that touch the borders 
of carpets at the fourth-stage of construction were discarded. As a consequence of this 
finite-size effect of the lattice, the remainder ensemble of DSAWs used to measure ( R i J  
were resuicted to be embedded in the lattice, enhancing the role of the largest lacuna. On 
the other hand, our results capture exactly the effect of the distiibution of lacunas of all 
sizes through the infinite fractal lattice because we also include the contribution of walks 
that cross neighbour reproductions of the tth stage carpet in the next stage, leading to the 
true critical behaviour of DSAWs. 

Our estimates of vL for both models on carpet 1 differ from the results obtained by 
Monte Carlo simulations on finite stages of that lattice [ l l ,  121, probably due to finite size 
effects in the simulations. However, the trend UL > 0.5 obtained in these simulations is 
also observed here for most lattices, specially for the high-lacunar ones. Also, our results 
show that PDSAW and FDSAW models belong to different universality classes for each carpet, 
in contrast to those results. 

In conclusion, this work presents new results for the critical behaviour of DSAWS on 
Sierpinski carpets. The attainment of accurate estimates of critical exponents from series 
analysis open new perspectives for the quantitative study of universality classes of DSAWs 
on carpets and on other families of regular fractals. 
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